Introducing the Document @bject
Model using OpenXML (BPare 1)

by Craig Murphy

Inmy last article | provided anintroduction to the OpenXML
project, aproject that encompasses the eXtended Document
Object Model (XDOM) XML components. Since then
Borland has shipped Delphi 6 — it seems fair to provide a
brief comparison/commentary on the XML features in
Delphi 6. You only have to glance at the Delphi 6 features
matrix to see that Borland have provided considerable
support for XML in the form of DataSnap and BizSnap.
However, DataSnap and BizSnap are features of Delphi 6
Enterprise thus, if you are using Delphi 6 Personal or
Professional, you may find XML support is limited to
MyBase (Personal XML Database Engine).

The XDOM implements the W3C DOM Core Level 2
recommendation [1] — the same standard that Borland have
provided in Delphi 6. However, as | mentioned in part 1,
the DOM is a portable Internet standard, therefore the time
you spend learning the DOM interfacesistime well spent —
you will be able to make use of any DOM on any platform.
The Delphi 6 help confirms this:

“At the lowest level in the XML document programming
support is the new xmldom.pas interface unit that provides
a cross platform and vendor independent set of interfaces
for programming with the W3C DOM Level 2 specification.
Designed with an open architecture, the interfaces are easily
integrated with existing DOM-based XML solutions.”

Delphi 6 provides a set of interfaces to third party DOM
implementations such as the Microsoft XML parser
(MSXML) or the IBM XML Parser. You will need to be
confident that your client machines have the third party
parser installed. Thisiswhere OpenXML has an edge — it
is a completely standalone solution that does not rely on
any additional DLLs. Using OpenXML doesnot necessitate
the installation of Internet Explorer 5.x on your client
machines — thus your install scripts are kept free from that
complexity too.

Recap

In part oneof thisarticle, | covered enough of the OpenXML
components to allow you to start using XML in your
applications. We looked at how the XDOM extended the
W3C DOM to allow XML files to be loaded. We also
examined how we could programmatically create an XML
document, and how we would select certain elementswithin
an XML document. The W3C DOM was introduced and
positioned as a portable Internet standard — so portable, we
were able to demonstrate building a DOM in Delphi and in
Internet Explorer 5. Importantly we saw that, regardless of
how you came about an XML document, it is a live view
into the XDOM data.

Where are we going?

In part one, | promised to cover node typesin more detail. |
also plan to cover TdomNode and the descendant class
TdomDocument inmoredetail. Namespaceswere skimmed
over, so | will explain them too. | am going to assume that
you have read part one of this article. When | wrote it,
XDOM was at version 2.3.10 and consisted of about 23,000

lines of code. Now, July 2001, XDOM is at version 2.3.15
and consists of over 29,000 lines of code. If you plan to
use the XDOM components, it's well worth visiting the
OpenXML[2] web site.

Listing 1 presents the XML document that will be used
throughout this article; most of the code snippets will also
assume that listing 2 has been executed beforehand.

TdomNode

TdomNodeisacentral XDOM class—wewill beusing many
of the TdomNode functions and properties over the course
of this article. Listing 3 presents the class definition for
TdomNode. Iterating over an XML document using the
nextSibling and previousSibling properties was
demonstrated in part one — this time we will take alook at
what else TdomNode has to offer.

Given that XML is good at representing hierarchical
information, surely there must be a means of identifying
whether a given node has child nodes? Well, there is—the
hasChildNodes method does just that. This function is
particularly good for usein arecursive function that iterates
over nodes - we will see an example of hasChildNodes later
in this article.

DOM Node Types

If we examine listing 3, we can see that every node has a
nodeType property. nodeTypeis of type TdomNodeType —
Listing 4 presents the node types as implemented in
XDOM .pas. Inpart onel explained that a TdomNode could
represent everything in an XML document and that includes
the elements and attributes that we have seen so far. Well,
it gets better, even the comments and textual aspects of an
XML document can be represented using a TdomNode.
Listing 5 presentsarecursive routine that traversesan entire
XML document, picking out the nodeTypes on the way.

The codein listing 5is not exactly rocket science, however
it does demonstrate the principle behind iterating over an
XML document of unknown size—with alittle modification,
it could easily be used to populate a treeview.

The example application that accompanies thisarticle hasa
“Node Types’ tab —assuming that listing 1 has been loaded,
and listing 5 has been executed, Figure 1 presents the
richplum.xml node types.

Selective Traversal

In part one | mentioned that we would be looking at some
more advanced filtering techniques. Trueto my word, | will
now discuss how the XDOM allows us to filter an XML
document at an element-level. The XDOM implements
the W3C Document Object Model Traversal [3] interfaces:
Iterator and TreeWalker. Both of these interfaces use
NodeFilters to implement the notion of document mutation.
A NodeFilter is essentially a user-provided function that
“accepts’, “rejects’ or “skips’ anode.

Using an Iterator

So, referring to listing 1, imagine how we might effect the
following filter: list all <staff> elements and their
children, where the <staff> ‘no’ attribute is not divisible
by two. It's a trivial filter, but it does provide enough
attributes [no pun intended] to allow me to demonstrate
XDOM filters. Whilst we could easily write our own
iteration and selection routine, we would find ourselves
writing the same piece of code over and over again. The
XDOM allows a generic filter event to be fired each and
every time we iterate over agiven XML document.

To implement a generic filter we must first build a class
that descends from TdomNodeFilter. Listing 6 presentsthe
snippet of code required to define our own TrplteratorFilter
class. Listing 7 implements the TrplteratorFilter class —
thereis only one method: acceptNode. Now that we have
a mechanism that allows filtering, we must connect it to a
TdomNode. If you recall from part one, aTdomNodeknows
about the nodes that come before and after it, so a single
node may well alow us to navigate through a collection of
nodes. XDOM offers a TdomNodelterator class that
provides us with a means of attaching the filter event,
acceptNode, to a given TdomNode — thus to iterate over an
entire DOM document, we can create an instance of
TdomNodelterator for the documentElement.

Listing 8 presents TdomNodelterator’s create method
definition — it takes four parameters, the first three of which
are useful in our example. The root parameter specifies
the element that we are going to iterate over, in our case it
will bedoc.documentElement, i.e. <richplum>. Thesecond
parameter, whatToShow, takes values from those specified in
listing 4 — notice how we are reusing the TdomNodeType
mentioned earlier. The third parameter takes an instance of a
TdomNodeFilter. Listing 9 presents a snippet of the XDOM
source—specifically thetypes and constants used by Iterators.

The whatToShow parameter may cause a little confusion —
it is capable of providing afirst-linefilter. In other words,
by the time the NodeFilter function is executed, we will
aready by looking at asubset of the original XML document.
Thus because | have set whatToShow equal to
nt_ElementNode, any node type that is not an element is
not considered to be part of the view. The W3C refer to
this side effect as node visibility.

Listing 10 presents the code required to implement an
Iterator. Figure 2 presents a screenshot from an application
that puts the code in listings 6, 7 and 10 to good use.

The power of the TdomNodeFilter class can be harnessed
if we consider how easy it isto extend our descendant class
to provide some serious customisation via the addition of
additional properties. The acceptNode function simply
alters the filter it performs based on it's state — no longer
do we need to cut and paste code that iterates over an XML
document selectively filtering out some elements.
Essentially, filters of this nature provide us with a means of
programmatically implementing [SQL] views.

The acceptNode function may return one of three values:
filter_accept, filter_reject or filter_skip. filter_accept
means that the node is acceptable and will form part of the
logical view. filter_reject is also fairly obvious, the node

and any children will not form part of the logical view.
filter_skip is dightly different — it means that the current
node is not part of the logical view, but any children it has
“may be” part of the view.

Beforewemaoveon, it’sworth noting that TdomNodel terator
is dightly different from the other DOM traversal classes
— it offers forward and reverse traversal via the nextNode
and previousNode methods, there are no nextSibling,
previousSibling methods.

Using a TreeWalker

On first impressions, you could easily think that a
TreeWalker and an Iterator performed the same task. In
essencethey do, the main difference being the data structure
each hasto offer. Aswe havejust seen, the Iterator offersa
linear forward/reverse list-like view into the DOM. The
TreeWalker, on the other hand, offers a three-dimensional
view that alows us to examine the children and the parent
of the currently selected node.

Listing 11 presents an example of the TreeWalker in use —
againit’satrivial example, however it demonstratesthat we
can traverse across (nextNode) the node tree as well as up
(parentNode). Figure 3 presents a screenshot of the
TreeWalker in action.

A word of warning...

We have seen the power offered by NodeFilters. Use that
power wisely —the W3C DOM Traversal Recommendation
advises against using NodeFilters as a mechanism for
modifying the DOM tree. However, NodeFilters do react
well to an ever-changing XML document —you may add and
remove elementsfrom an XML document without affecting
any associated Iterators or TreeWalkers.

XML Namespaces

XML Namespaces provide a means of preventing element
naming conflicts and allow us to “infer” some sort of
meaning from XML elements (and XML element groups).
XDOM provides a number of functions that help us work
with XML namespaces. Listing 12 presents an XML
document that has been augmented with namespaces. The
crux behind Listing 12 is the uniqueness that we can derive
from a web address (a URL). Notice how we have two
invoice elements, each prefixed with anamespace: richplum
and poorpeach. Each namespace is associated with an
identifier — thisidentifier really has to be unique, hence we
use [permanent] URLs. Any elements inside a prefixed
element are automatically assumed to be members of the
same namespace, i.e. <amount> isamember of the richplum
namespace.

The XDOM provides a considerable number of *helper
functions’ that allow usto work withraw XML. Listing
13 presents a few of these functions. Given
<richplum:invoice>, we can use XMLExtractPrefix to
obtain ‘richplum’ or ‘poorpeach’; whereas
XMLExtractL ocalName allows us to obtain the invoice
component. Using isXMLName allows us to determine
whether richplum:invoiceisavalid XML name.

Summary

Over the course of these two articles, we have seen how to
incorporate XML into our day-to-day applications. The
importance of W3C recommendations cannot be
understated. W3C recommendations are typically portable
Internet standards, thus learning about them and using them
should always be time well spent. Other W3C
recommendations that are in the W3C space include the
Simple Object Access Protocol (SOAP) and the eXtensible
Stylesheet Language for Transformation (XSLT).

Even with the recent release of Delphi 6, there is till a
market for OpenXML — not everybody will upgrade to
Delphi 6 immediately. Equally, Delphi 6 Enterprise may
well befinancially prohibitive. OpenXML iscurrently free
— it works with Delphi 3,4,5 and Delphi 6 (at the time of
writing this involved minor tweaks to the uses clause — no
doubt the author is working on a version that works in all
versions, even Kylix).

Craig works as an Enterprise
Developer (and Dilbert Evangelist!)
for Currie & Brown (http://
www.currieb.com) — their primary
business is quantity surveying, cost
management and project management.
He can be reached via e-mail at:
Craig.Murphy@currieb.co.uk or
Craig@isleofjura.demon.co.uk

<?xm version="1.0"7?>

<l—richplumxm —

<ri chpl unme

<staff no="1"><sur name>Goul son</ sur nane>
<firstname>Phil </firstname></staff>
<staff no="2"><surname>Pool ey</sur name>
<firstnanme>Joanna</firstname></staff>
<staff no="3"><surname>Jack</surname>
<firstname>Angus</firstname></staff>
<staff no="4"><surname>Parsons-Hann</
surname> <firstname>Wendy</firstname></
staf f>

<st af f no="5"><sur nane>Jenki nson</ sur nane>
<firstnanme>Debra</firstname></staf f >

<st af f no="6"><sur nane>Jenki nson</ sur nane>
<firstname>Jon</firstname></staff>

<staff no="7"><surname>W ntringham</
sur name> <firstname>Ben</firstname></
staf f>

<staff no="8"><surnane>Scott</surnane>

<firstnanme>Steve</firstname></staff>
</richplunm>

Listing 1 — richplum.xml

doc : TDonDocunent;
doc: =Xnt ToDonfPar ser . fi | eToDon{* ri chpl umxnm’);

Listing 2 — Assumed state

/Resources \

[1] The W3C DOM Level 2 specification is available here:
http://www.w3c.org/DOM-L evel-2/

[2] OpenXML is available from this web site:
http://www.philo.de/xml .
The OpenXML manual inHTML Help (.chm) format: http:/
/www.philo.de/xml/dom/xdom2_3_15.chm. It’s worth
noting that at the time of writing this .chm file documented
an earlier version of the XDOM source code. Snippets of
the OpenXML source are presented in this article - The
author of OpenXML, Dieter Kohler, gave his permission to
use code fragments in this article.

[3] The W3C DOM Traversal recommendation is available
here: http://www.w3.0rg/ TR/IDOM-L evel-2-Traversal-Range

All the source code for this article is available from my
Qveb site: http://www.craigmurphy.com/bug. /

Figure 1 — Every

node has a type
o E—
Figure 2 —
Advanced
filtering really
does work
|
T —
Figure 3 —
TreeWalker

allow access to
parent nodes (and
children)

TdonmNode = cl ass TdomNodeType = (nt Unknown,

public nt El enent _Node,
constructor create(const aOaner: nt Attri but e_Node,
TdonDocunent) ; nt Text _Node,
destructor destroy; override; nt CDATA Sect i on_Node,
function appendChil d(const newChil d: nt Entity Reference_Node,
TdonNode) : TdomNode; virtual; nt Entity_Node,
procedure clear; virtual; nt Processi ng_I nstructi on_Node,
function cl oneNode(const deep: bool ean): nt Corment _Node,
TdonmNode; virtual; nt Docunent _Node,
functi on hasChil dNodes: bool ean; nt Docunent _Type_Node,
virtual ; nt Docunent _Fr agnment _Node,
function insertBefore(const newChild, nt Not at i on_Node) ;
ref Chil d: TdomNode):
TdomNode; virtual; Listing 4 - TdomNodeType
function isAncestor(const Ancestor Node:
TdonmNode) : bool ean; virtual; pr ocedur e
procedure normalize; virtual; TFor mL. bt nPar seNodeTyped i ck(
function renoveChild(const ol dChild: Sender: TObject);
TdomNode) : TdomNode; virtual; var
function replaceChild(const newChild, xm Node : TDomNode:
ol dChil d: TdomNode) : function _TypeOfi(n : TdomNode) : string;
TdonNode; virtual; var
function resolveEntityReferences(sType : string;
const opt: begi n
TdonEnt i t yResol veOpti on): case n.nodeType of
bool ean; virtual; . ntAttribute Node: sType :=
function supports(const feature, version: ‘ntAttribute Node':
wi deString): bool ean; virtual; nt El ement Node: sType : =
procedure witeCode(Stream TStreamn; ‘nt El ement Node’ :
virtual ; nt Conment _Node: sType : =
property attributes: TdomNanmedNodeMap “nt Conment _Node’ :
read getAttributes; nt Text Node: sType : =
property chil dNodes: TdonmNodeLi st “nt Text Node' :
read get Chi | dNodes; /| ...abbreviated. ..
property code: wideString read get Code; end:
property firstChild: TdomNode TypeOf : = sType;
read get FirstChild, ena;
property isReadonly: bool ean
read Fl sReadonl y; procedure _Recurse(n : TdonNode);
property | astChild: TdoniNode begi n
read getlastChild; while n<>nil do begin
property |ocal Name: wideString Li st box1. i t ems. add(n. nodeNare +
read FlLocal Nane; “(*+ n.nodeValue + ‘') is a
property namespaceURl : w deString “ 4+ _Typedi(n));
read FNanespaceURl; i f n.hasChi | dNodes then
property nextSi bling: TdomNode Recurse(n. firstChild);
read get Next Sibling; n: =n. next Si bl i ng;
property nodeNanme: wideString end:
read get NodeNane; end:
property nodeType: TdomNodeType
read get NodeType; begi n
property nodeVal ue: wi deString Li st box1. d ear:
read get Nodeval ue xm Node : = doc. firstChild;
write setNodeval ue; whi I e xm Node <> ni| do begin
property owner Document: TdomDocument Li st box1. it ems. add(xni Node. nodeNane +
read get Docunent; “(*+ xnl Node. nodeVal ue + ‘) is a
property parent Node: TdomNode * 4+ _TypeO (xm Node));
read get Par ent Node; i f xn Node. hasChi | dNodes t hen
property previousSibling: TdonNode Recur se(xnl Node. first Child);
read get PreviousSi bling; xm Node: =xn Node. next Si bl i ng;
property prefix: w deString end:
read FPrefix wite setPrefix; end:
end;

Listing 3 — TdomNode class definition Listing 5 - Recursively examining nodes

TrplteratorFilter = C ass(TdonmNodeFilter)

functi on accept Node(const n: TdomNode):
TdonFi |l terResul t; override;

end;

Listing 6 — Filtering is inherited from
TdomNodeFilter

function TrplteratorFilter.accept Node(
const n: TdomNode): TdonFilterResult;
var xm NodeMap : TDonmNamedNodeMap;

sSt af f No : string;
begi n
if n.nodeName = ‘staff’ then begin
xm NodeMap : = n.attributes;
sStaff No : = xnml NodeMap. Get Nanedl t em(

‘no’). NodeVal ue;
if (StrTolnt(sStaffNo) nod 2) = 0 then

result := filter_reject
el se
result := filter_accept;
end
el se

result:=filter_reject;
end;

Listing 7 — implementing advanced filtering
constructor create(const root: TdonNode;
const what ToShow. TdomAhat ToShow;
const nodeFilter: TdomNodeFilter;

const entityReferenceExpansion:
bool ean); virtual;

Liging 8 — TdomNodel terator’s create method is the key

Type TdomAhat ToShow = set of TdonNodeType;

TdonFilterResult =
(filter_accept,filter_reject,filter_skip);

const show al|: TdomAhat ToShow =
[nt El enent _Node .. Hi gh(TDonNodeType)];

Listing 9 — Filling in the blanks

procedure TFornil. btnlteratord ick(Sender

TObj ect) ;
var domtr : TdomNodelterator;
filter : TrplteratorFilter;
node : TdonmNode;
begi n
// Create node filter
filter := TrplteratorFilter. Create;
try

// Create node iterator
dom tr: =TdonmNodel t er at or. creat e(
doc. docunent El enent ,
[nt El ement _Node] ,filter,fal se);
nmeno2. cl ear;
node : = dom tr. next Node;
whil e node <> nil do begin
menn2.text = nenp2.text +
node. code + #13#10;
node: =dom t r . next Node;

end;
finally
filter.free;

end;
end;

Listing 10 — Using an lterator

procedure TForml. bt nTr eeVal ker Cl i ck(
Sender: TObj ect);
var donmTW : Tdonilr eeV\l ker;
filter : TrpTreeWal kerFilter;
node : TdonmNode;

begi n
// Create node filter
filter := TrpTreeWal kerFilter. Create;
try
// Create node iterator
donTW =Tdonilr eeWl ker . cr eat e(
doc. docunent El enent ,
[nt El enent _Node], filter, false);
menp4. cl ear ;
node : = doniTW next Node;
whil e node <> nil do begin

menp4. t ext : = neno4. t ext + node. code;
i f (node. parent Node <> nil) then
meno4. text := nenp4.text + ° ny parent
is‘ + node. par ent Node. nodeNane;
nmenmod. text = neno4d.text + #13#10;
node: =domT'W next Node;
end;
finally
filter. Free;
end;
end;

Listing 11 — Using a TreeWalker

<?xm version="1.0"7?>

<r oot >

<richpluminvoi ce xm ns:richplum=
"http://richplum co. uk/invoice”>

<anpunt >100</ anount >

</richpluminvoi ce>

<poor peach: i nvoi ce xm ns: poor peach=
"http://poorpeach. co. uk/invoi ce” >

<anopunt >100</ anount >

</ poor peach: i nvoi ce>

</root >

Listing 12 — namespacesin an XML document

function isXm Name(const S: wideString):
bool ean;
functi on XMLExtract Local Nanme(
const qualifiedName: w deString):
wi deStri ng;
functi on XMLExtract Prefi x(
const qualifiedName: w deString):
wi deStri ng;

Listing 13 — XDOM namespace helper functions

