
In my last article I provided an introduction to the OpenXML
project, a project that encompasses the eXtended Document
Object Model (XDOM) XML components. Since then
Borland has shipped Delphi 6 – it seems fair to provide a
brief comparison/commentary on the XML features in
Delphi 6. You only have to glance at the Delphi 6 features
matrix to see that Borland have provided considerable
support for XML in the form of DataSnap and BizSnap.
However, DataSnap and BizSnap are features of Delphi 6
Enterprise thus, if you are using Delphi 6 Personal or
Professional, you may find XML support is limited to
MyBase (Personal XML Database Engine).

The XDOM implements the W3C DOM Core Level 2
recommendation [1] – the same standard that Borland have
provided in Delphi 6. However, as I mentioned in part 1,
the DOM is a portable Internet standard, therefore the time
you spend learning the DOM interfaces is time well spent –
you will be able to make use of any DOM on any platform.
The Delphi 6 help confirms this:

“At the lowest level in the XML document programming
support is the new xmldom.pas interface unit that provides
a cross platform and vendor independent set of interfaces
for programming with the W3C DOM Level 2 specification.
Designed with an open architecture, the interfaces are easily
integrated with existing DOM-based XML solutions.”

Delphi 6 provides a set of interfaces to third party DOM
implementations such as the Microsoft XML parser
(MSXML) or the IBM XML Parser. You will need to be
confident that your client machines have the third party
parser installed. This is where OpenXML has an edge – it
is a completely standalone solution that does not rely on
any additional DLLs. Using OpenXML does not necessitate
the installation of Internet Explorer 5.x on your client
machines – thus your install scripts are kept free from that
complexity too.

Recap
In part one of this article, I covered enough of the OpenXML
components to allow you to start using XML in your
applications. We looked at how the XDOM extended the
W3C DOM to allow XML files to be loaded. We also
examined how we could programmatically create an XML
document, and how we would select certain elements within
an XML document. The W3C DOM was introduced and
positioned as a portable Internet standard – so portable, we
were able to demonstrate building a DOM in Delphi and in
Internet Explorer 5. Importantly we saw that, regardless of
how you came about an XML document, it is a live view
into the XDOM data.

Where are we going?
In part one, I promised to cover node types in more detail. I
also plan to cover TdomNode and the descendant class
TdomDocument in more detail. Namespaces were skimmed
over, so I will explain them too. I am going to assume that
you have read part one of this article. When I wrote it,
XDOM was at version 2.3.10 and consisted of about 23,000

lines of code. Now, July 2001, XDOM is at version 2.3.15
and consists of over 29,000 lines of code. If you plan to
use the XDOM components, it’s well worth visiting the
OpenXML[2] web site.

Listing 1 presents the XML document that will be used
throughout this article; most of the code snippets will also
assume that listing 2 has been executed beforehand.

TdomNode
TdomNode is a central XDOM class – we will be using many
of the TdomNode functions and properties over the course
of this article. Listing 3 presents the class definition for
TdomNode. Iterating over an XML document using the
nextSibling and previousSibling properties was
demonstrated in part one – this time we will take a look at
what else TdomNode has to offer.

Given that XML is good at representing hierarchical
information, surely there must be a means of identifying
whether a given node has child nodes? Well, there is – the
hasChildNodes method does just that. This function is
particularly good for use in a recursive function that iterates
over nodes - we will see an example of hasChildNodes later
in this article.

DOM Node Types
If we examine listing 3, we can see that every node has a
nodeType property. nodeType is of type TdomNodeType –
Listing 4 presents the node types as implemented in
XDOM.pas. In part one I explained that a TdomNode could
represent everything in an XML document and that includes
the elements and attributes that we have seen so far. Well,
it gets better, even the comments and textual aspects of an
XML document can be represented using a TdomNode.
Listing 5 presents a recursive routine that traverses an entire
XML document, picking out the nodeTypes on the way.

The code in listing 5 is not exactly rocket science, however
it does demonstrate the principle behind iterating over an
XML document of unknown size – with a little modification,
it could easily be used to populate a treeview.

The example application that accompanies this article has a
“Node Types” tab – assuming that listing 1 has been loaded,
and listing 5 has been executed, Figure 1 presents the
richplum.xml node types.

Selective Traversal
In part one I mentioned that we would be looking at some
more advanced filtering techniques. True to my word, I will
now discuss how the XDOM allows us to filter an XML
document at an element-level. The XDOM implements
the W3C Document Object Model Traversal [3] interfaces:
Iterator and TreeWalker. Both of these interfaces use
NodeFilters to implement the notion of document mutation.
A NodeFilter is essentially a user-provided function that
“accepts”, “rejects” or “skips” a node.

Introducing the Document Object

Model using OpenXML (Part 1I)

by Craig Murphy

Using an Iterator
So, referring to listing 1, imagine how we might effect the
following filter: list all <staff> elements and their
children, where the <staff> ‘no’ attribute is not divisible
by two. It’s a trivial filter, but it does provide enough
attributes [no pun intended] to allow me to demonstrate
XDOM filters. Whilst we could easily write our own
iteration and selection routine, we would find ourselves
writing the same piece of code over and over again. The
XDOM allows a generic filter event to be fired each and
every time we iterate over a given XML document.

To implement a generic filter we must first build a class
that descends from TdomNodeFilter. Listing 6 presents the
snippet of code required to define our own TrpIteratorFilter
class. Listing 7 implements the TrpIteratorFilter class –
there is only one method: acceptNode. Now that we have
a mechanism that allows filtering, we must connect it to a
TdomNode. If you recall from part one, a TdomNode knows
about the nodes that come before and after it, so a single
node may well allow us to navigate through a collection of
nodes. XDOM offers a TdomNodeIterator class that
provides us with a means of attaching the filter event,
acceptNode, to a given TdomNode – thus to iterate over an
entire DOM document, we can create an instance of
TdomNodeIterator for the documentElement.

Listing 8 presents TdomNodeIterator’s create method
definition – it takes four parameters, the first three of which
are useful in our example. The root parameter specifies
the element that we are going to iterate over, in our case it
will be doc.documentElement, i.e. <richplum>. The second
parameter, whatToShow, takes values from those specified in
listing 4 – notice how we are reusing the TdomNodeType
mentioned earlier. The third parameter takes an instance of a
TdomNodeFilter. Listing 9 presents a snippet of the XDOM
source – specifically the types and constants used by Iterators.

The whatToShow parameter may cause a little confusion –
it is capable of providing a first-line filter. In other words,
by the time the NodeFilter function is executed, we will
already by looking at a subset of the original XML document.
Thus because I have set whatToShow equal to
nt_ElementNode, any node type that is not an element is
not considered to be part of the view. The W3C refer to
this side effect as node visibility.

Listing 10 presents the code required to implement an
Iterator. Figure 2 presents a screenshot from an application
that puts the code in listings 6, 7 and 10 to good use.

The power of the TdomNodeFilter class can be harnessed
if we consider how easy it is to extend our descendant class
to provide some serious customisation via the addition of
additional properties. The acceptNode function simply
alters the filter it performs based on it’s state – no longer
do we need to cut and paste code that iterates over an XML
document selectively filtering out some elements.
Essentially, filters of this nature provide us with a means of
programmatically implementing [SQL] views.

The acceptNode function may return one of three values:
filter_accept, filter_reject or filter_skip. filter_accept
means that the node is acceptable and will form part of the
logical view. filter_reject is also fairly obvious, the node

and any children will not form part of the logical view.
filter_skip is slightly different – it means that the current
node is not part of the logical view, but any children it has
“may be” part of the view.

Before we move on, it’s worth noting that TdomNodeIterator
is slightly different from the other DOM traversal classes
– it offers forward and reverse traversal via the nextNode
and previousNode methods, there are no nextSibling,
previousSibling methods.

Using a TreeWalker
On first impressions, you could easily think that a
TreeWalker and an Iterator performed the same task. In
essence they do, the main difference being the data structure
each has to offer. As we have just seen, the Iterator offers a
linear forward/reverse list-like view into the DOM. The
TreeWalker, on the other hand, offers a three-dimensional
view that allows us to examine the children and the parent
of the currently selected node.

Listing 11 presents an example of the TreeWalker in use –
again it’s a trivial example, however it demonstrates that we
can traverse across (nextNode) the node tree as well as up
(parentNode). Figure 3 presents a screenshot of the
TreeWalker in action.

A word of warning…
We have seen the power offered by NodeFilters. Use that
power wisely – the W3C DOM Traversal Recommendation
advises against using NodeFilters as a mechanism for
modifying the DOM tree. However, NodeFilters do react
well to an ever-changing XML document – you may add and
remove elements from an XML document without affecting
any associated Iterators or TreeWalkers.

XML Namespaces
XML Namespaces provide a means of preventing element
naming conflicts and allow us to “infer” some sort of
meaning from XML elements (and XML element groups).
XDOM provides a number of functions that help us work
with XML namespaces. Listing 12 presents an XML
document that has been augmented with namespaces. The
crux behind Listing 12 is the uniqueness that we can derive
from a web address (a URL). Notice how we have two
invoice elements, each prefixed with a namespace: richplum
and poorpeach. Each namespace is associated with an
identifier – this identifier really has to be unique, hence we
use [permanent] URLs. Any elements inside a prefixed
element are automatically assumed to be members of the
same namespace, i.e. <amount> is a member of the richplum
namespace.

The XDOM provides a considerable number of ‘helper
functions’ that allow us to work with raw XML. Listing
13 presents a few of these functions. Given
<richplum:invoice>, we can use XMLExtractPrefix to
obtain ‘richplum’ or ‘poorpeach’; whereas
XMLExtractLocalName allows us to obtain the invoice
component. Using isXMLName allows us to determine
whether richplum:invoice is a valid XML name.

Summary
Over the course of these two articles, we have seen how to
incorporate XML into our day-to-day applications. The
importance of W3C recommendations cannot be
understated. W3C recommendations are typically portable
Internet standards, thus learning about them and using them
should always be time well spent. Other W3C
recommendations that are in the W3C space include the
Simple Object Access Protocol (SOAP) and the eXtensible
Stylesheet Language for Transformation (XSLT).

Even with the recent release of Delphi 6, there is still a
market for OpenXML – not everybody will upgrade to
Delphi 6 immediately. Equally, Delphi 6 Enterprise may
well be financially prohibitive. OpenXML is currently free
– it works with Delphi 3,4,5 and Delphi 6 (at the time of
writing this involved minor tweaks to the uses clause – no
doubt the author is working on a version that works in all
versions, even Kylix).

Craig works as an Enterprise
Developer (and Dilbert Evangelist!)
for Currie & Brown (http://
www.currieb.com) – their primary
business is quantity surveying, cost
management and project management.
He can be reached via e-mail at:
Craig.Murphy@currieb.co.uk or

Craig@isleofjura.demon.co.uk

<?xml version=”1.0"?>
<!— richplum.xml —>
<richplum>
<staff no=”1"><surname>Goulson</surname>
<firstname>Phil</firstname></staff>
<staff no=”2"><surname>Pooley</surname>
<firstname>Joanna</firstname></staff>
<staff no=”3"><surname>Jack</surname>
<firstname>Angus</firstname></staff>
<staff no=”4"><surname>Parsons-Hann</
surname> <firstname>Wendy</firstname></
staff>
<staff no=”5"><surname>Jenkinson</surname>
<firstname>Debra</firstname></staff>
<staff no=”6"><surname>Jenkinson</surname>
<firstname>Jon</firstname></staff>
<staff no=”7"><surname>Wintringham</
surname> <firstname>Ben</firstname></
staff>
<staff no=”8"><surname>Scott</surname>
<firstname>Steve</firstname></staff>
</richplum>

Listing 1 – richplum.xml

 doc : TDomDocument;
 doc:=XmlToDomParser.fileToDom(‘richplum.xml’);

Listing 2 – Assumed state

Resources
[1] The W3C DOM Level 2 specification is available here:
http://www.w3c.org/DOM-Level-2/

[2] OpenXML is available from this web site:
http://www.philo.de/xml .
The OpenXML manual in HTML Help (.chm) format: http:/
/www.philo.de/xml/dom/xdom2_3_15.chm. It’s worth
noting that at the time of writing this .chm file documented
an earlier version of the XDOM source code. Snippets of
the OpenXML source are presented in this article - The
author of OpenXML, Dieter Köhler, gave his permission to
use code fragments in this article.

[3] The W3C DOM Traversal recommendation is available
here: http://www.w3.org/TR/DOM-Level-2-Traversal-Range

All the source code for this article is available from my
web site: http://www.craigmurphy.com/bug.

Figure 1 – Every
node has a type

Figure 2 –
Advanced

filtering really
does work

Figure 3 –
TreeWalker

allow access to
parent nodes (and

children)

TdomNode = class
public

constructor create(const aOwner:
TdomDocument);

 destructor destroy; override;
 function appendChild(const newChild:

TdomNode): TdomNode; virtual;
 procedure clear; virtual;
 function cloneNode(const deep: boolean):

TdomNode; virtual;
function hasChildNodes: boolean;

virtual;
 function insertBefore(const newChild,

refChild: TdomNode):
TdomNode; virtual;

function isAncestor(const AncestorNode:
TdomNode): boolean; virtual;

 procedure normalize; virtual;
 function removeChild(const oldChild:

TdomNode): TdomNode; virtual;
 function replaceChild(const newChild,
 oldChild: TdomNode):

TdomNode; virtual;
 function resolveEntityReferences(

const opt:
TdomEntityResolveOption):
boolean; virtual;

function supports(const feature, version:
wideString): boolean; virtual;

procedure writeCode(Stream: TStream);
virtual;

property attributes: TdomNamedNodeMap
read getAttributes;

 property childNodes: TdomNodeList
read getChildNodes;

property code: wideString read getCode;
property firstChild: TdomNode

read getFirstChild;
property isReadonly: boolean

read FIsReadonly;
property lastChild: TdomNode

read getLastChild;
 property localName: wideString

read FLocalName;
property namespaceURI: wideString

read FNamespaceURI;
property nextSibling: TdomNode

read getNextSibling;
 property nodeName: wideString

read getNodeName;
 property nodeType: TdomNodeType

read getNodeType;
 property nodeValue: wideString

read getNodeValue
write setNodeValue;

 property ownerDocument: TdomDocument
read getDocument;

property parentNode: TdomNode
read getParentNode;

property previousSibling: TdomNode
read getPreviousSibling;

 property prefix: wideString
read FPrefix write setPrefix;

 end;

Listing 3 – TdomNode class definition

 TdomNodeType = (ntUnknown,
 ntElement_Node,
 ntAttribute_Node,
 ntText_Node,
 ntCDATA_Section_Node,
 ntEntity_Reference_Node,
 ntEntity_Node,
 ntProcessing_Instruction_Node,
 ntComment_Node,
 ntDocument_Node,
 ntDocument_Type_Node,
 ntDocument_Fragment_Node,
 ntNotation_Node);

Listing 4 - TdomNodeType

procedure
TForm1.btnParseNodeTypeClick(

Sender: TObject);
var
 xmlNode : TDomNode;
function _TypeOf(n : TdomNode) : string;
 var

 sType : string;
 begin
 case n.nodeType of

ntAttribute_Node: sType :=
 ‘ntAttribute_Node’;

 ntElement_Node: sType :=
 ‘ntElement_Node’;

 ntComment_Node: sType :=
 ‘ntComment_Node’;

 ntText_Node: sType :=
 ‘ntText_Node’;

 // ...abbreviated...
 end;
 _TypeOf := sType;
 end;

procedure _Recurse(n : TdomNode);
begin
 while n<>nil do begin
 Listbox1.items.add(n.nodeName +

‘(‘+ n.nodeValue + ‘) is a
 ‘ + _TypeOf(n));

if n.hasChildNodes then
 _Recurse(n.firstChild);

 n:=n.nextSibling;
 end;
 end;

begin
 Listbox1.Clear;
 xmlNode := doc.firstChild;
 while xmlNode <> nil do begin

 Listbox1.items.add(xmlNode.nodeName +
 ‘(‘+ xmlNode.nodeValue + ‘) is a
 ‘ + _TypeOf(xmlNode));
if xmlNode.hasChildNodes then
 _Recurse(xmlNode.firstChild);

 xmlNode:=xmlNode.nextSibling;
 end;
end;

Listing 5 - Recursively examining nodes

TrpIteratorFilter = Class(TdomNodeFilter)
function acceptNode(const n: TdomNode):

TdomFilterResult; override;
end;

Listing 6 – Filtering is inherited from
TdomNodeFilter

function TrpIteratorFilter.acceptNode(
const n: TdomNode): TdomFilterResult;

var xmlNodeMap : TDomNamedNodeMap;
 sStaffNo : string;
begin
 if n.nodeName = ‘staff’ then begin
 xmlNodeMap := n.attributes;

 sStaffNo := xmlNodeMap.GetNamedItem(
‘no’).NodeValue;

 if (StrToInt(sStaffNo) mod 2) = 0 then
 result := filter_reject
 else
 result := filter_accept;
 end
 else
 result:=filter_reject;
end;

Listing 7 – implementing advanced filtering

constructor create(const root: TdomNode;
 const whatToShow: TdomWhatToShow;
 const nodeFilter: TdomNodeFilter;

 const entityReferenceExpansion:
 boolean); virtual;

Listing 8 – TdomNodeIterator’s create method is the key

Type TdomWhatToShow = set of TdomNodeType;

TdomFilterResult =
 (filter_accept,filter_reject,filter_skip);

const show_all: TdomWhatToShow =
 [ntElement_Node .. High(TDomNodeType)];

Listing 9 – Filling in the blanks

procedure TForm1.btnIteratorClick(Sender
: TObject);

var domItr : TdomNodeIterator;
 filter : TrpIteratorFilter;
 node : TdomNode;

begin
 // Create node filter
 filter := TrpIteratorFilter.Create;
 try

// Create node iterator
domItr:=TdomNodeIterator.create(

doc.documentElement,
 [ntElement_Node],filter,false);
 memo2.clear;
 node := domItr.nextNode;
 while node <> nil do begin

memo2.text := memo2.text +
node.code + #13#10;

 node:=domItr.nextNode;
 end;

finally
 filter.free;
 end;
end;

Listing 10 – Using an Iterator

procedure TForm1.btnTreeWalkerClick(
Sender: TObject);

var domTW : TdomTreeWalker;
 filter : TrpTreeWalkerFilter;
 node : TdomNode;

begin
 // Create node filter
 filter := TrpTreeWalkerFilter.Create;
 try
 // Create node iterator

 domTW:=TdomTreeWalker.create(
 doc.documentElement,

 [ntElement_Node], filter, false);
 memo4.clear;
 node := domTW.nextNode;
 while node <> nil do begin

 memo4.text := memo4.text + node.code;
 if (node.parentNode <> nil) then
 memo4.text := memo4.text + ‘ my parent

is ‘ + node.parentNode.nodeName;
 memo4.text := memo4.text + #13#10;

 node:=domTW.nextNode;
 end;
 finally
 filter.Free;
 end;
end;

Listing 11 – Using a TreeWalker

<?xml version=”1.0"?>
<root>
<richplum:invoice xmlns:richplum=

”http://richplum.co.uk/invoice”>
<amount>100</amount>
</richplum:invoice>

<poorpeach:invoice xmlns:poorpeach=
”http://poorpeach.co.uk/invoice”>

<amount>100</amount>
</poorpeach:invoice>
</root>

Listing 12 – namespaces in an XML document

function isXmlName(const S: wideString):
boolean;

function XMLExtractLocalName(
const qualifiedName: wideString):
wideString;

function XMLExtractPrefix(
const qualifiedName: wideString):
wideString;

Listing 13 – XDOM namespace helper functions

