
The Developers Group Magazine May/June 2005 Page 1 return to index

ADO.NET and System.Xml v.2.0 -
The Beta Version

book review by Craig Murphy

There’s no doubt about it, XML as a means of representing data has arrived. Whilst
Microsoft’s .NET framework 1.1 did a good job of bringing XML and data
representation/access together, it’s fair to say that the .NET framework 2.0 brings
with it significantly more integration and ease of use.

I was pleased to be given the chance to pick up a copy of this book hot off the press
direct from one of its authors: Alex Homer. It’s unlikely to arrive in the UK officially until April 30th!

The UK’s software legends, Dave Sussman and Alex Homer teamed up with Microsoft’s Mark Fussell to
produce this 528-page (1" thick!) coverage of ADO.NET, the System.Xml v.2.0 namespace and XML integration
with SQL Server 2005. It’s about as bang up-to-date as you can get, and you’re reading about it here!

Introduction
When Microsoft introduced the .NET programming framework, many people were surprised at the
fundamental changes to data access techniques that it encompassed. Not only was there a new model for
both connected and disconnected relational database management, but a raft of new ways to work with
XML. And now version 2.0 of the Framework is on its way, bringing with it fresh opportunities and new
techniques that not only extend the reach of the technology, but also make many common tasks much easier
to accomplish than ever before. This book previews and explains the features of the new versions of ADO.NET
and System.Xml, based on the Beta release. It includes asynchronous commands and multiple active results
sets, SQL Server 2005 integration, the universal query architecture, plus the enhancements to the DataSet,
XPathDocument, the new XQuery support, and more.

Book Structure
There are 12 chapters, each of which is a good mix of narrative and code. There’s nothing in the way of
reference-style content, i.e. page after page of method listings and property listings that merely regurgitate a
help file.

Two authors contribute to a well-balanced Foreword, kept down to a shade over four pages. Both Forewords
were written by Microsoft employees working in the WebData Team: Michael Pizzo and Soumitra Sengupta.
The WebData team goes back a long way, as far as I know, at least to the year 2000 and probably earlier.
These guys have been so close to XML and data access, it positions them perfectly as either budding authors
of this book or as readers/reviewers. I think it’s safe to say that this book has been read by the very people
who made ADO.NET and System.Xml v.2.0 a reality: prior to that it was written by the three people most
qualified to turn a technical topic into readable narrative.

Chapter Content

New Concepts in Data Access

This first chapter wastes no time in setting the scene, both history (.NET 1.0) and current/future (.NET 2.0).
On the first page, mention of the fact that the Common Language Runtime (CLR) can now be hosted inside
of SQL Server 2005 (Yukon) suggests that what we are about to read is going to be a factual and straight-to-
the-point account of .NET 2.0.

The chapter then goes on to provide a summary of The Evolution of Data Management in .NET, information
About the .NET Version 2.0 Beta Release and New Concepts in Version 2.0. It also provides A Summary of
New Features in ADO.NET and System.Xml: this is an excellent section that draws a neat map (textually) of
the remainder of the book, covering such areas as ADO.NET enhancements, SQL Server 2005 Integration
and XML Enhancements.

Lastly, this chapter discusses the New Data Source Controls and Data Binding Features in ASP.NET.

www.drbob42.net
www.designer-software.net
mailto:steve@designer-software.net
http://uke.multimap.com/map/browse.cgi?pc=W60RF
mailto:joanna@richplum.co.uk

The Developers Group Magazine May/June 2005 Page 2 return to index

ADO.NET Data Management Enhancements

ADO.NET v.1.0 heralded the introduction of disconnected data access and sported a number of classes
allowing us to work with data in the absence of a physical connection to the database. This chapter discusses
ADO.NET v.2.0’s ability to access data synchronously, its integration with the .NET System.Transaction
namespace (allowing local transactions to promoted to a distributed transaction), batch updating using a
DataAdaptor and the new classes available to managed code allowing the bulk copying of data (similar to
SQL Server’s Bulk Copy Program, BCP).

This is the first chapter to mention MARS: Multiple Active Results Sets. MARS is a SQL Server 2005 feature
that allows us to open multiple result sets over a single connection – you’ll need ADO.NET v.2.0 in order to
make use of it. When would MARS be useful? Well, if you use a single table to hold your entire application’s
collection of drop-down or pop-up menu items, you may well need to fire off multiple queries at the same
table in the same database.

The narrative in this chapter explains the need for synchronous and asynchronous access to data and ties it
in nicely with its discussion about MARS. Clearly there are issues with MARS (what it does) and asynchronous
data access: this chapter explains those issues succinctly.

Provider Factories, Schema Discovery, and Security

Today’s modern applications don’t limit themselves to a single database. In fact, from a corporate perspective,
it pays to select a vendor whose application runs on a choice of database platforms. This chapter discusses
the ADO.NET 2.0 APIs that we can use to help make our applications database-agnostic, or database-neutral.
Such neutrality is achieved by introducing the concept of layering or interface/protocol stacking.

This chapter provides a fairly in-depth and technical look at the Provider Factory classes, the
DBConnectionStringBuilder class, the Schema Discovery API, Security and Performance. Whilst this is
required reading, particularly before an application is architected and a database platform is firmed up, I
did think that this chapter arrived rather early in the book.

The DataSet and DataTable Classes

The performance enhancements between the DataSet class in ADO.NET 1.0 and the same class in 2.0 are
presented in an eye-catching graph – the reader could hardly fail to miss it. A comparison of the 1.0 DataSet
and the 2.0 DataSet during an insert rows benchmark demonstrates that large numbers of inserts in a 2.0
application should take less than half as long as a 1.0 application.

Coverage of the new features found in the DataSet class follows, making reference to future chapters, whetting
the appetite for an XML datatype that we’ll learn more about later.

Again, this chapter is rather in-depth and does appear as a reasonably low chapter number. However, since
we cannot avoid working with the DataSet and DataTable classes, such coverage is welcomed.

ADO.NET and SQL Server 2005

This chapter covers the merging of two separate items of functionality: SQL Server 2005 and ADO.NET. It
does so by focusing on three areas of functionality: MARS, SQL Server Query Notifications and SQL Server
User-Defined Types (UDTs).

MARS was first mentioned in chapter two, albeit at a rather high level. This chapter goes into much more
detail regarding the use of MARS, taking nine pages to do so.

SQL Server Query Notifications essentially invert the processing logic: instead of a client application
periodically polling the database for changes, Query Notifications allow the client to register their interest
and be told whenever a particular piece of data (obtained via a query) has been changed or invalidated. The
authors spend some 15 pages covering Query Notifications and make good use of seven small examples.

Given that we’ve already learnt that this book explains the fact that SQL Server can host any CLR-compliant
language, it should come as no surprise to learn that this chapter also discusses UDTs and how we can
extend SQL Server’s existing data types with those from a managed code environment. Some 12 pages and
5 code examples explain when and how UDTs should be used.

SQL Server 2005 CLR Hosting

This chapter’s key takeaway is the ability to write SQL Server 2005 stored procedures using a CLR-compliant
language such as Visual Basic .NET, C#. The SqlProcedure attribute allows us to mark or decorate a piece of
code as being a stored procedure.

www.drbob42.net

The Developers Group Magazine May/June 2005 Page 3 return to index

XML in SQL Server 2005

This chapter starts by making reference to SQL Server 2005 as an XML database. This is excellent news. The
new XML datatype allows us to store XML in a typed form such that it conforms to an XML Schema. This
kind of functionality is something we had to do manually prior to SQL Server 2005. The XML datatype also
allows us to use column names in SQL statements and stored procedures.

A good discussion about the XML Schema Repository in SQL Server 2005 then follows. XML Schema is
worthy of a book in its own right. The authors carefully recognise this and make excellent use of a simple
example that covers the salient points, thus keeping this discussion focused on the Schema Repository.

Now that structure and schema have been covered, the authors then move on to discussing inserts and
selects, using the xml datatype. It should come as no surprise to learn that XML has its own query language:
XQuery (learn more about XQuery in The Delphi Magazine, Issue 75, November 2001). XQuery uses the
XPath language to query an XML document that is held in a SQL Server 2005 table. Again, XQuery and
XPath are topics in their own right and, again, the authors have noticed this and do not try to explain these
subjects in depth. Instead, they choose to focus on the common questions/pitfalls that you and I might come
across when trying to work with XML-based querying, such as XML Namespaces and the rather interesting
subject of binding relational data inside XML.

The XML datatype is also implemented in ADO.NET. A brief discussion about the changes to the underlying
namespaces, classes and the methods they expose follows. I was pleased to see the authors highlight the fact
that certain field types and property names might change between the beta release and the final release of
.NET v.2.0. Working with SQL Server 2005’s XML datatype via ADO.NET includes coverage of: reading
XML via a DataReader, updating an XML column with a Command, updating an XML column using an
XML DML Statement, reading and updating the XML Data Type with a DataSet or DataTable, loading a
DataTable containing an XML-Typed column and updating a DataTable containing an XML-Type column.

The remainder of this chapter, seven pages and five screenshots, covers how to use the XML Classes in the
SQL Server CLR.

XML in the .NET Framework

This is by far the most easy to read and succinct introduction to XML and its associated technologies that I
have seen to date. It covers the importance of XML, why you need it, a look at the System.Xml v.1.0 namespace,
what’s new in the System.Xml v.2.0 namespace, XML Support in Visual Studio 2005 and an introduction to
XQuery.

Regular readers of my work will probably have a good idea as to why XML is so popular and will know
many reasons why we need it. This book’s authors position XML within the context of the XML specifications
such as XML 1.0, DOM 1.0, XPath 1.0, XSLT 1.0, SOAP 1.2, XML Schema and the XML Information Set.
Whilst these specifications don’t make easy reading, this chapter covers their salient points, giving new
readers a good overall grounding in the history of XML.

There is good coverage of XML’s relationship (no pun intended) to databases, its use in web applications,
description of data via schemas, transformation and presentation via XSLT and querying via XQuery. Mention
of its ability to form part of a content publishing framework is touched on but the focus quickly moves on to
XML in .NET.

Through effective use of diagrams, XML’s position with the .NET framework becomes clear. The boundaries
between the XML world and the relational world are evident, even to the point that the notion of serialising
a class as XML, for dissemination over a network, is touched upon.

Whilst not very detailed, a reasonable discussion of the System.Xml v.1.0 namespaces follows. It covers
such topics as: XML reading and writing, XML document editing, XML validation and content checking,
XML querying, and XSL transformation. I see this chapter as a directional chapter: it gives you the pointers
and it’s up to you to perform the in-depth research. This is an admirable approach and one that makes the
chapter that bit easier to read.

System.Xml v.2.0 is then explained, using the same headings as noted above for v.1.0. XML support in
Visual Studio 2005 is discussed, intermingled with a handful of screenshots. Importantly, with XSLT now
being compiled, the fact we can now debug XSLT using the Visual Studio 2005 debugger is a gem not missed
by these authors! Indeed a screenshot of the XML Schema editor, which looks rather similar to the XML
Schema editor in earlier versions of Visual Studio, is also included.

This chapter closes with ten pages explaining XQuery and how it can be used for querying XML data.

www.designer-software.net
mailto:steve@designer-software.net
http://uke.multimap.com/map/browse.cgi?pc=W60RF
mailto:joanna@richplum.co.uk

The Developers Group Magazine May/June 2005 Page 4 return to index

Reading and Writing XML
I do like the way the authors present scenarios at the start of most chapters. This is an ideal mechanism for
communicating what the chapter is about to cover and, importantly, why we might need the chapter itself.

Given that this chapter is nearly 90 pages long, it really only covers reading (loading) and writing (creating)
XML documents and fragments. However, it does go into reasonable detail covering how XML can be
validated (for type and structure) using Document Type Definitions and XML Schema.

Good coverage of how to deal with XML fragments, i.e. small parts of a larger XML document, and how to
deal with them using code makes this chapter a good read. Similarly, there are a few good examples that
cover most XML developers’ bane: XML namespaces. Kudos to the authors for providing these examples.
Further coverage borrows from the other chapters where we learnt that System.Xml v.2.0 now supports
Typed Content Accessor methods, thus allowing us to work with XML as if it were typed.

I was pleased to see code examples of the ReadTo methods. These allow us to open an XML document/
datastore and navigate to a particular element with just one line of code. Essentially, the ReadTo methods
map on to XPath axes (more information about XPath axes can be found here: http://www.craigmurphy.com/
bug/XML/XMLPPT1.zip, slide 30).

Creating XML is the job of the XmlWriter class. Of course, the authors cover creation of an untyped XML
document and a typed XML document. They also demonstrate how to integrate the XmlReader and XmlWriter
classes to create an HTML page from an RSS feed: the code was simplicity and evidence enough, no screenshot
was required and none was given.

Tagged on towards the end of this chapter are six pages about Security and XML. With XML’s popularity,
it’s only a matter of time before somebody finds a means of causing havoc using XML…and that would
throw the entire industry into mayhem. Restricting DTD parsing and XSLT processing are two such security
mechanisms that the authors cover, both with narrative and code examples.

The chapter wraps up with a look at how we might create an XML Schema from an existing XML document,
a process known as inferring an XML Schema from an XML Document. We need this kind of functionality in
order to make good use of XML Documents with SQL Server 2005 – it requires an XML Schema before it will
look at XML. Whilst XML Schema inference is embedded within the Visual Studio IDE, it is also surfaced
via the XmlSchemaInference Class, thus we can access it programmatically.

XML Serialization Enhancements
As the authors rightly point out in this chapter’s opening salvo, serialization (or serialisation for us Brits),
isn’t something you might find yourself doing much. Or so you thought. If you’ve been building web
service-based applications using either Visual Studio or Delphi, under the hood, the web service architecture
has been serialising your data and classes on your behalf.

Pre-generation of serialisation assemblies is covered, albeit rather lightly. The command-line syntax for the
Serialisation Generation Tool, sgen, is given, as is a worked example covering two pages. A further three
pages explain the enhanced operation of the IXMLSerializable interface, using two pages of code to
demonstrate it in practice. This chapter, whilst useful, has a high code to narrative ratio, which isn’t necessarily
a bad thing – serialisation is important so perhaps it’s best demonstrated via a reasonable sized code example.

XML Document Stores
I’m surprised that this chapter appears so late in this book: I would have thought it would have been presented
earlier. It spends much of its 45 pages setting the scene for XML, using the XmlDocument class, limitations
of the XML DOM, design guidelines for exposing XML from your classes, the XPathNavigator with cursor-
editing model, using XPath queries, inserting attributes and elements using the XPathNavigator and adding
and removing elements using the XPathNavigator. I think we can conclude that the XPathNavigator plays a
major part in the System.Xml v.2.0 namespace. Indeed, it was read-only in the v.1.0 namespace, now it has
been opened up for editing.

The XPathNavigator API is covered using a series of small examples – these demonstrate the salient points
without too much noise. The XmlDocument class is now capable of understanding XML Schema (previously
we had to use a validating XmlReader). This has the advantage of making our XmlDocument instances type
aware. Obviously some sort of mapping between XML Schema types (XSDs) and CLR types needs to be
defined. This is a subject the authors choose to explain via a mapping table and a code example making use
of the CLR type Double.

A further eight pages cover the ins and outs of validation against an XML Schema, making good use of short
examples to convey the salient points. The remainder of the chapter covers XPath queries, drawing upon the
authors’ knowledge and experience to answer many frequently asked questions (FAQs from newsgroups).

http://www.craigmurphy.com/bug/XML/XMLPPT1.zip
http://www.craigmurphy.com/bug/XML/XMLPPT1.zip
www.drbob42.net

The Developers Group Magazine May/June 2005 Page 5 return to index

Transforming XML Documents
Chapter 12’s great revelation is the introduction of compiled XSL Transforms, introduced by the
XslCompiledTransform class. Naturally, the authors waste no time in benchmarking the performance of the
compiled XslTransform class and the .NET 1.1 XslTransform class. You will be interested to note that the
new XslCompiledTransform class offers 200% to 400% performance gains depending upon your scenario.
How is this performance gain realised? Well, XSLT is now compiled into .NET’s intermediate language:
MSIL. If XSLT can be compiled into MSIL, you can perhaps imagine the incredible side-effect that this has:
creation of a program database (PDB) file is now possible, as is debugging via an XSLT debugger!

With XSLT now being compiled, it should come as no surprise that Microsoft have allowed XSLT to be
extended to call out to code that has been written outside of the .xsl file itself. This concept isn’t new and has
been around since the days of Microsoft’s Core XML Services 3 (MSXML3) – it was possible to call methods
written using JavaScript, VBScript, or even a dll. A concise example is presented, demonstrating the ability
to encapsulate functionality within a separate Visual Basic.net class, instantiate the class from a .xsl transform
and use methods declared within the .xsl transform.

This chapter also provides a few words revolving around the subject of when to use the eXtensible Stylesheet
Language for Transformation (XSLT). This is a welcome addition and it answers one of my most popular
after-presentation questions.

Lastly, this chapter discusses XSLT security. It’s perhaps something not a lot of us think about, but with
script hacking becoming increasingly popular, it is worthy of a mention. Whilst basic .xsl transformations
are reasonably harmless (watch this space, I’ll eat my hat!), XSLT’s scripting capabilities introduce the need
for security. Two settings are discussed: XsltSettings.EnableScript and UnmanagedCodePermission. Like
most Microsoft offerings these days, the EnableScript property is set to false. I would like to have seen a
little more written about the XSLT security concerns and solutions (“go and write it yourself”, I hear you
cry!). However, I’m sure that .NET v.2.0 has been designed with security in mind, besides security sometimes
has to be retrospective: until there’s an attack, we don’t know what to secure!

Conclusions
I have only two gripes about this book: the code samples are written using Visual Basic.net and the book
does assume some prior knowledge. Luckily, the authors have been kind enough to provide C# versions of
the code on their web-site! Prior knowledge shouldn’t put you off; .NET has been with us publicly since
2000. Unless you’ve been living under a rock for the last five years, it’s very likely that you’ve found yourself
reading some .NET 1.0 and 1.1 material.

Now that Dave and Al have moved to Addison Wesley, we can say adios to large tomes comprising three-
fifths code and narrative and two-fifths appendices and sometimes the other way around. This is a good
read; it is straight to the point and hits the nail on the head for a number of potentially scary subjects. If you
are thinking of buying a book with the title: ADO.NET and System.Xml v.2.0, the beta version, I think it’s fair
to say that you’re coming from a reasonably technical background and that you have an interest in where the
technology’s come from and going to.

Whilst the code samples in the book have been edited down, full versions are available from Dave and Al’s
web-site. I would recommend having the full code samples available to you, even if you don’t compile/run
them, but to use them for reference.

If you have enjoyed some success with .NET 1.1 and you are now planning a .NET/XML project and intend
to use .NET 2.0, I can strongly recommend this book as a great introduction to the salient points: the narrative
is there, but has not been padded out. This book is clearly targeted at a developer audience, particularly an
audience with some .NET 1.0 or 1.1 exposure and a moderate amount of XML awareness.

About This Book
Expect to pay £22.39 from Amazon for Ado.Net and System XML V. 2.0: The Beta Version in paperback,
528 pages (marked as 400 at Amazon), published April 30, 2005 by Addison Wesley, ISBN: 0321247124.

Other Resources

• http://www.daveandal.net

• http://www.awprofessional.com/title/0321247124#

• Learn more about XQuery in The Delphi Magazine, Issue 75, November 2001

• http://www.craigmurphy.com/bug/XML/XMLPPT1.zip

http://www.amazon.co.uk/exec/obidos/ASIN/0321247124/qid%3D1113828295/202-5976480-4295022
http://www.daveandal.net
http://www.awprofessional.com/title/0321247124#
http://www.craigmurphy.com/bug/XML/XMLPPT1.zip
www.designer-software.net
mailto:steve@designer-software.net
http://uke.multimap.com/map/browse.cgi?pc=W60RF
mailto:joanna@richplum.co.uk

The Developers Group Magazine May/June 2005 Page 6 return to index

brian@blong.com www.blong.com

InstallAWARE Product Promotion

InstallAWARE 33% discount offer - all editions
Upgrade your installation experience to InstallAWARE: Partial web deploy saves you bandwidth, and your
customers download time, by isolating runtimes (or rarely used application features) from your installation,
while still producing a fully self contained setup.exe that works without requiring an Internet connection.
Genuine scripting for Windows Installer makes authoring MSI based packages a snap and isolates you from
all aspects of Windows Installer - you visually build your setup script, including conditional branching, and
InstallAWARE converts it to an MSI package automatically at build time. The dialog editor is very similar to
Delphi/C++Builder and has advanced controls like interactive Flash/HTML billboards, and makes it very
easy to pass values between your setup script and user interface. InstallAWARE also has many more unique
features - LZMA/BCJ2 compression, one-click patch creation, debugging - all to save you time and effort
while building your setups.

Just click www.installaware.com/buy.asp to order, and choose any crossgrade option for an instant 33%
discount.

InstallAWARE Free copies
We are raffling three Express and one Developer licenses at each of our meetings in May, June and July.
These normally sell at £55.55 (£38.72 at the discount price above) and £195.80 (£139.70). Have a look at the
excellent web site www.installaware.com for a table showing the features of each edition. You can also
compare InstallAWARE with other products. [Ed]

About InstallAWARE
InstallAWARE has been designed from the ground up to meet today’s setup authoring needs. It provides a
perfect fusion of Windows Installer, Web Deployment, and Scripting technologies. Developers can author
Windows Installer setups in complete isolation from all aspects of MSI tables, databases, sequences, and so
on. They just create a conditional setup script, and at build time, InstallAWARE magically converts that
script into a legal, logo-certifiable MSI database. Moreover, developers can break up their setups into multiple
online and offline parts, removing rarely used application features and runtimes from the main setup
executable, but still making sure that the essential application data is contained within the main setup
executable. With other products, its all or never web deployment, with no choice on which features go where.

Other unique InstallAWARE features are: Flash/HTML billboards for interactive progress dialogs, a choice
of 12 (twelve) setup themes, a sophisticated dialog editor with a rich set of controls, superior compression
which does wonders in eliminating the shared overhead in executable files, and also tightly compresses
runtimes (the entire .NET runtime gets reduced to 11MB, compared to the regular 23MB), and an innovative
two-way linked IDE which has a visual view that generates the installation script automatically, along with
the code view that provides complete access to the heart of the installation.

What developers love about InstallAWARE is that it lets them break through the confines of Windows Installer,
and author a setup script the intelligent way - they spend time coding their setup logic, instead of worrying
about populating MSI database tables; but the end result is always a logo compliant Windows Installer
installation.

http://www.installaware.com/buy.asp
http://www.installaware.com
www.drbob42.net
www.designer-software.net
mailto:steve@designer-software.net
http://uke.multimap.com/map/browse.cgi?pc=W60RF
mailto:joanna@richplum.co.uk
www.blong.com
mailto:brian@blong.com

